

Ahmed Diallo, Program Director, ARPA-E

Fusion New Program Development Workshop March 7, 2023

ARPA-E New Fusion Program Development Team

ARPA-E

Ahmed Diallo Program Director

Sam Wurzel T2M Advisor

Anil Ganti ARPA-E Fellow

Special Thanks to ARPA-E Directors and Fellows:

- Bob Ledoux Program Director
- Laurent Pilon Program Director
- Olga Spahn Program Director
- Phil Kim Program Director
- Katharine Greco ARPA-E Fellow

Booz Allen SETAs

Edward Cruz

Cheng Xu

Pankaj Trivedi

Colin Gore

Sade Ruffin

- Christina Leggett
 - Nancy Hicks

ARPA-E Mission

Goal 1: To enhance the economic and energy security of the U.S. through the development of energy technologies that—

Goal 2: To ensure that the U.S. maintains a technological lead in developing and deploying advanced energy technologies.

Framing of fusion energy within ARPA-E's portfolio

► Fusion samples the highest-risk and highest-impact end of ARPA-E's portfolio

Renewables + long-duration storage

Advanced nuclear fission

Fossil w/CCUS

Enhanced geothermal

Biofuels

Zero carbon emissions

Dispatchable

Globally scalable

Beyond 2050 - risk-mitigation option for meeting net-zero targets

ARPA-E impact on commercial fusion R&D

- ARPA-E's fusion programs changed fusion R&D landscape
 - \$780M (and growing) of private funding as a result of ARPA-E fusion awards
 - Focus on capital cost and projected levelized cost of electricity (LCOE)
- ▶ New (MIF) and renewed (MFE/IFE) investigations of promising fusion concepts
 - Enabling materials & technologies R&D focused on multiple, commercially oriented concepts
- From one (ITER) to multiple development paths (CFS, CTFusion, Helion, HyperJet, Realta, Type One, Zap, etc.)
 - 6 new fusion companies from ARPA-E programs so far
- Broad engagement with commercialization stakeholders

Commercial Fusion Needs Accelerated Development

Growth of private-sector fusion investments Figure credit: Sam Wurzel, ARPA-E

- Commercial investment in fusion energy has been steadily increasing
- Scientific feasibility of ignition has finally been demonstrated!
- White House bold decadal vision combined with recent breakthroughs provide a clear path to a Fusion Power Plant (FPP)

Still Unmet Requirements of a Fusion Power Plant (FPP)

► FPP compatible materials

 Robust materials are essential, needing a dedicated and FPP relevant neutron source for validation and development

► FPP enabling technologies

 Increase attractiveness of FPPs by increasing plant efficiency and availability, reducing the cost and operational complexity

Net energy gain

 A high-performance plasma producing net energy is at the center of any potential FPP

Closed fuel cycle

- Tritium self-sufficiency is a key requirement for the first commercial FPPs
- EPRI Fusion Fuel Cycles and Blankets Workshop 2023 to be held May 23rd 25th, 2023 at EPRI's offices in Charlotte, NC.

How ARPA-E Fusion Programs Align with FPP Requirements

Workshop Objective

- Refocus the conversation around the enabling technologies.
- Foster collaboration to tackle fusion related technology challenges.
- Support transformative R&D to enable a grid-ready, commercially viable fusion demonstration in decadal time frame.

Key Enabling Technologies for Low-Cost Fusion Energy

Low-cost commercial fusion energy

Improving performance with innovative heating schemes and highperformance targets

> Advanced driver technologies and target-driver architectures

Microwave heating (e.g., high-power, long-pulse microwave sources with electrical efficiency ≥ 55%)

Neutral particle beam heating challenges (e.g., novel neutral beam approaches; negative ion beam system with electrical efficiency > 60%)

- Low-cost scalable high rep-rate laser drivers for inertial fusion
- Reproducible target design and delivery systems at few Hz
- Optics technology with higher damage threshold tolerance to optics damage (gas optics, etc.)

Materials "by design" for all aspects of FPP

Solid & self-healing materials with the following features

- minimize half-lives of materials
- reduce dust formation
- minimize fuel retention (e.g., hydrogen)
- minimize the displacement per atom due to neutron irradiations
- high heat resistant (> 600 C)
- corrosion resistant

Workshop Topics Break Down

Theme A (Day 1): Improving fusion power plant (FPP) performance with innovative heating schemes, advanced drivers and high-performance targets and fueling

► Theme B (Day 2): Increasing FPP availability through accelerated discovery, synthesis, verification, implementation and scaling of novel fusion materials

Bonus: Game-changing ideas are necessary to accelerate these technologies to a point suitable for low-cost commercial fusion energy

Breakdown of Workshop Attendees

- 95 total attendees, thank you all for coming!
- Problems ahead require major collaboration, please make connections and look forward towards working together

Institutional Breakdown of Attendees: University National Lab 29% 46% Industry 25%

Attendees include:

Theme A: Heating systems for MFE

Technology	Objective(s)	Current SOTA	Possible targets
Gyrotrons for electron cyclotron resonance heating (ECH) and current drive	Increase power, frequency, efficiency and availability while reducing cost	 Up to 1 MW output power Up to 200 GHz frequency Up to 50% efficiency Up to 300 s pulse width Not all at once 	 ~2 MW output power >250 GHz frequency >300 s pulse width ~70% efficiency 10x reduction in \$/W of output power 2x-5x increase in lifetime of high-current emitter materials All at once
Neutral Beam Injection (NBI) systems for plasma heating and control and reactor fueling	Increase current density, efficiency, reliability and modularity while reducing size and complexity	 ~1 MeV output ~60% neutralization efficiency ~26% wall plug efficiency ~200 A/m² peak negative ion (D-) current density 	 ~1 MeV output ≥90% neutralization efficiency ≥70% wall plug efficiency ≥600 A/m² peak negative ion (D-) current density ≥50% source power per unit injected power 10x reduction in \$/W of output power 3x improvement in up time between service intervals

Theme A: Laser Systems and fuel system

Technology	Objective(s)	SOTA	Possible targets
Electron beam pumped ArF excimer lasers and diode pumped solid-state lasers (DPSSL)	Increase rep rate and availability for ArF lasers; dramatically reduce cost of diode and improve lifetime of gain medium for solid-state lasers	 < 1 every 2 - 8 hrs reprate (NIF) Sub 1% wall-plug efficiency at 3ω Diode for DPSSL systems not cost competitive for commercial FPPs. 	 ≥10 Hz shot rep-rate ≥10% wall-plug efficiency at 3ω ≥≥70 kV at >30 kA solid-state switch performance >3-year lifetime of electron beam foil window for ArF 10x reduction in cost of diode for DPSSL systems 3x improvement in thermal shock resistance value of gain medium for DPSSL
IFE target delivery & manufacturing	Cheaply produce robust targets in mass quantities that can be rapidly delivered to the target chamber	<10 targets per day>\$100 cost per target	 Production capacity of ~1M targets per day <\$0.05 cost per target
Final focusing optics	Increase lifetime and availability at 3ω		• >1 billion shot lifetime

Day 1 Agenda – Theme A

Innovative Heating Schemes, Advanced Drivers and High-Performance Targets and Fueling

FE)
-

2:15 - 2:20 pm	Breakout Session 1: Introduction & Objectives		
2:15 – 2:30 pm	Dr. Ahmed Diallo - Program Director, ARPA-E		
2:30 - 2:45 pm	Coffee Break; transition to breakout sessions		
	Breakout Session 1: Metrics for Theme A w/ Focus on Cost		
	Group 1: RF and Neutral Beam Heating Systems		
2:45 - 4:15 pm	Group 2: Solid-State Laser Drivers and Optical Materials		
	Group 3: Excimer Laser Drivers and Pulse Power Systems		
	Group 4: Target Manufacturing and Fuel Delivery		
4:15 – 4:45 pm	Break, Snacks & Networking		
4:45 - 5:30 pm	Report out of breakout session 1		
5:30 - 5:45 pm	Q & A		
6:00 - 8:00 pm	Optional one-on-one meetings with PD		
5:45 pm	Conclusion of Day 1		